Capital Value of a continuous income stream is simply the present value on the interval \([0, \infty)\),
that is Capital Value = \(\int_{0}^{\infty} f(t)e^{-rt} dt \) where \(f(t) \) is the rate of income flow function, and \(r \) is the annual interest rate compounded continuously. In other words, capital value gives the worth of an investment that generates income forever.

Examples:

a) Neal has created a new computer game. He decides to lease the rights to his computer game to GameStop for an indefinite annual payment of $15,000. Determine the capital value of this lease at an annual interest rate of 7.5% compounded continuously.

b) You wish to leave a scholarship at SAC for future business majors in your name. If the scholarship is to be for $1500 annually, and the interest rate is 6.25% compounded continuously, what does your initial investment need to be to fund the scholarship indefinitely?

Homework Problems:

1) B.K. O'Neal just discovered oil on some newly inherited land. He decides to lease the oil rights to Exxon Oil for an indefinite annual payment of $50,000. Determine the Capital value of this lease at an annual interest rate of 8% compounded continuously.

2) Maria Lopez, a wealthy alumna of Old State University, wants to establish a scholarship in her name for business students. If the annual scholarship is to be $10,000, how much does Maria need to fund this scholarship if the annual interest rate is 6% compounded continuously?
3) Elle owns a rental property that generates an indefinite annual rent of $12,000. Determine the capital value of this property at an annual interest rate of 5.5% compounded continuously.

4) If the annual proceeds from the Emma Lou Smith scholarship fund will be $8000 indefinitely and the annual interest rate is 7.5% compounded continuously, how much should be invested to fund this scholarship?

Answers:
1) Capital value = $625,000
2) Maria needs to donate $166,666.67 to fund her scholarship indefinitely
3) Capital value is about $218,182
4) About $106,667